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Turbulent fountains in a stratified fluid
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The turbulent fountain that results from the injection of a dense fluid upwards into
a large tank of stably stratified fluid of lower density is studied experimentally and
theoretically. For both axisymmetric and line fountains, we have used a combination
of dimensional arguments and laboratory experiments to determine the initial height
above the source at which the flow first comes to rest. Depending on the strength
of the stratification and the fluxes of momentum and buoyancy at the source, the
subsequent downflow may either spread along the base of the tank or intrude at an
intermediate height in the environment. We determine both the height of intermediate
intrusion and the critical condition for spreading along the base. We also relate
numerical solutions of the entrainment equations to our experimental observations,
and obtain effective entrainment coefficients for both axisymmetric and line fountains.
Finally, we discuss the quantitative application of our results to the replenishment of
magma chambers and to the heating or cooling of a room.

1. Introduction
The behaviour of turbulent jets, plumes and fountains has been explored theoreti-

cally and experimentally in a series of studies spanning the past forty years. Detailed
reviews by Fischer et al. (1979), List (1982) and Turner (1986) outline how our current
understanding has arisen from a combination of laboratory experiments, dimensional
arguments and numerical solutions of the entrainment equations, which quantify the
effects of the entrainment of surrounding fluid into the flow (Morton, Taylor & Turner
1956; Turner 1973).

The first study of a turbulent fountain in both homogeneous and stratified envi-
ronments was by Morton (1959 a). He used the entrainment equations to quantify the
increasing radius and the decreasing buoyancy and velocity of dense fluid injected
upwards into a lighter environment. However, these equations are only valid until the
velocity of the first element of fluid in the flow is reduced to zero at the initial fountain
height. To investigate the flow after the fluid reverses direction and falls around the
central upflow, laboratory experiments are needed. Experiments in a homogeneous
environment (Turner 1966; Campbell & Turner 1989; Baines, Turner & Campbell
1990) showed that the turbulent interaction between the up- and downflows restricts
the rise of any further fluid and thus immediately reduces the initial fountain height
to a smaller final value. This observed final height was related to the momentum
and buoyancy fluxes at the source using dimensional arguments, and the relevant
constants were found experimentally.

In this paper we investigate experimentally and theoretically the effect of an
environmental density gradient on the behaviour of turbulent fountains. In § 2, we
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Figure 1. Photographs of an axisymmetric fountain where the density of the input fluid is equal
to that at the base of the environment, the input volume flux is 4.5×10−5 m3 s−1 and the density
gradient is 0.3 kg m−4. (a) The flow rises initially as a jet, entraining surrounding fluid (t = 3 s), until
it reaches an initial height. (b) After reaching the initial height, the falling fluid intrudes into the
environment (t = 10 s). (c) A layer forms as fluid continues to intrude at the same height (t = 30 s).

first outline the qualitative behaviour of axisymmetric and line fountains in a stratified
fluid. We then present our quantitative results for axisymmetric sources in § 3 and
for line sources in § 4. In § 5 we apply our results to two physical problems: the
replenishment of magma chambers and the heating or cooling of a room. Finally, the
main conclusions are summarized in § 6.

2. Qualitative observations
Fountains are produced in the laboratory by injecting dense fluid upwards through

a nozzle placed on the base of a tank containing a stably stratified fluid which at
all heights has a density less than or equal to the source fluid. The environmental
fluid is entrained into the initial upflow, increasing the fountain radius (figure 1 a),
and decreasing the source fluid density. The momentum of the rising fluid is reduced
by the opposing buoyancy force until the flow first comes to rest at an initial height
above the source. The downflow which forms after this point continues to mix with
the environment while also interacting turbulently with the upflow. This interaction
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restricts the rise of further fluid and therefore reduces the initial fountain height to a
final value about which there are random fluctuations on the scale of 5–10% of the
fountain height.

The final density of the downflow depends on the strength of the ambient stratifi-
cation. In a homogeneous environment the falling fluid always remains denser than
the ambient, so the flow must spread along the base of the tank. However, when
the density of the source fluid is the same as that at the base of a gradient, any
entrainment of ambient fluid must reduce the density of the downflow to equal that
in the environment at some intermediate height. At this point, the flow still has some
downward momentum, so a small overshoot is observed before it intrudes into the
environment (figure 1 b). The thickness of this outflow is comparable to the spreading
height near the fountain axis but quickly becomes thinner with increasing radial
distance (figure 1 c). In all cases in which the source fluid has a negative buoyancy at
the base of a tank of stably stratified fluid, the fountain flow lies between these two
limits of behaviour.

Qualitatively similar behaviour is observed in the flow from a line source. Just
after starting the flow, the injected fluid rises through the environment (figure 2 a)
until first coming to rest at an initial height. In this case, however, the initial height
is not significantly reduced by the interaction between the upflow and subsequent
downflow. Depending on the strength of the stratification, the falling fluid may again
either spread along the base or intrude into the environment at a height of neutral
buoyancy (figure 2 b). The thickness of this intruding layer once more decreases
with increasing distance from the axis of the flow. The profile of a line fountain
oscillates randomly between an asymmetric (figure 2 b) and symmetric (figure 2 c)
profile. During the intervals in which the downflow is deflected to one side of the
upflow, a corresponding decrease in the final fountain height is observed. These
additional instabilities were also seen in a homogeneous environment (Baines et al.
1990), although the fluctuations in our case are reduced by the ambient density
stratification, resulting in a more stable fountain.

3. Axisymmetric fountains
The investigation of axisymmetric fountains proceeds as follows. We begin by

describing the experimental apparatus and methods in § 3.1. In § 3.2 we study the
fountains produced in the simple case where the source fluid and the ambient fluid
at the base of the tank have the same density, resulting in a zero buoyancy flux at
the source. First, in § 3.2.1, we compare the experimental data for the initial, final and
spreading heights to the length scale obtained from dimensional analysis. In § 3.2.2,
we use the entrainment equations to develop a numerical model to describe the flow.
These numerical results are then compared to the experimental data to estimate an
effective value of the entrainment coefficient. In § 3.3 we present the experimental
data, dimensional arguments and numerical results for the general case in which the
density of the source fluid is greater than that of the ambient at the base of the tank.

3.1. Experimental methods

The experiments were carried out in an acrylic tank 40 cm × 40 cm in cross-section
and 80 cm deep, which was filled to a depth of approximately 25 cm. The ambient
linear density gradient was established with NaCl solutions using the double bucket
method (Oster 1965). The fluid densities were measured by refractometry to within
0.1%, giving a relative error in the density gradient of approximately 1%.
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Figure 2. Photographs of a line fountain where the density of the input fluid equals that at the base
of the tank, the input volume flux per unit length is 8.8 × 10−5 m2 s−1 and the density gradient is
0.06 kg m−4. (a) The fluid rises initially as a line jet (t = 10 s) before it reaches an initial height. (b)
After the fluid starts to intrude into the environment, the fountain profile may become asymmetric
(t = 30 s). When this occurs, the fountain height decreases. (c) The fountain fluctuates randomly
between an asymmetric and a symmetric profile (t = 50 s).

The source fluid was placed in a 20 l bucket which was raised 1.5 m higher than
the main tank. The flow rate resulting from this gravitational head was adjusted with
a valve and measured with a flow meter to an accuracy of 1–4%. The source fluid
was injected upwards from the base of the tank through a tube with an 8.8 mm inner
diameter.

The flows were observed using the shadowgraph method and were recorded on
video. This procedure allowed the fountain heights to be measured to within 0.5 cm
(2–5% of the fountain height), and an average value of the fluctuating final height to
be found over a period of time.

In preliminary experiments, the flow from the source was laminar for the first 2–3
cm, so wire crosshairs were introduced within the tube to induce turbulence. One
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Figure 3. The position of the front formed by a jet in a homogeneous environment. The crosses
represent heights measured above the base of the tank, while the circles are the heights above the
virtual point source which is located 1 cm below the base of the tank. The slope of the line then
indicates that the effective source radius is re = 4.16 mm.

set of 0.5 mm diameter crosshairs was positioned 3 mm from the tube outlet and
the second set aligned and placed 44 mm further along the tube. The effect of these
crosshairs was determined quantitatively by performing an experiment with a weakly
buoyant jet in a homogeneous environment (Baines et al. 1990). The injected source
fluid rose until it impinged on the free surface before spreading laterally towards the
tank walls. The horizontal boundary, or front, which separated this fluid layer from
the ambient then descended through the environment as more fluid from below it was
entrained into the upflow and added to the layer above. The motion of this boundary
is quantified by considering the conservation of volume flux at the height of the front:

d

dt
(Azd) = −Qj(zd), (1)

where A is the cross-sectional area of the tank, zd is the height of the front above
the virtual point source, Qj = 2α(πMo)

1/2zd (Rodi 1982) is the volume flux in the
jet assuming a top-hat velocity profile, and α is the entrainment coefficient. The
momentum flux at the source, ρiMo, is not measured directly, but is related to the
volume flux at the source, Qo, by Mo = Q2

o/(πr
2
e ), where ρi is the density of the source

fluid and re is the effective source radius. For fully turbulent flow, re is equal to the
measured source radius, ro, while in laminar flow, re =

√
3ro/2. Integrating (1) gives

zd = zH exp

(
−2αQo
Are

t

)
, (2)

where zH is the height at which the fluid initially spreads out along the free surface
and α = 0.076 (Rodi 1982). To determine the position of the virtual point source, zv ,
its assumed location was varied until, when zv = 1.0 ± 0.2 cm below the base of the
tank, the plot of ln(zd) against time resulted in a straight line (figure 3). Then, from
the slope of this line, the effective source radius was found to be re = 4.16 ± 0.23 mm.
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Figure 4. The initial (�), final (N) and spreading (�) heights of an axisymmetric fountain plotted
against the length scale for the flow with a zero buoyancy flux at the source.

We therefore conclude that the crosshairs have significantly increased the turbulence
at the source.

Morton (1959 a) showed that, even with a density difference between the source and
environmental fluid, the lower part of the flow arising from a source of momentum is
not significantly different from that of a jet. Hence, for our fountain experiments in
which the flow in the region between the virtual and actual sources remains jet-like,
the values of re and zv can be assumed to remain invariant.

3.2. Zero buoyancy flux at the source

In the simple case when the density of the source fluid is equal to the ambient at
the base of the tank, the flow depends only on two parameters: the momentum
flux at the source, ρiMo, and the buoyancy frequency, which is defined by N =(
−(g/ρo)(dρ/dz)

)1/2
, where g is the gravitational acceleration, ρ is the environmental

density, ρo is the density at the base of the tank and z is the height above the base.
Dimensional arguments indicate that the only length scale that can be obtained from

a combination of these parameters is M
1/4
o N−1/2 (Fischer et al. 1979). The initial

fountain height, zi, the final height, zf , and the spreading height, zs, must all therefore
take the form

z = CM1/4
o N−1/2, (3)

where C is an unknown constant.

3.2.1. Experimental results

Eleven experiments were performed to determine the values of the constants Ci, Cf
and Cs for the initial, final and spreading heights respectively. The volume flux at the
source Qo was in the range (2–34)×10−6 m3 s−1 and the buoyancy frequency N was
in the range 0.9–1.8 s−1.

The experimental results for the three heights are plotted against M
1/4
o N−1/2 in

figure 4. Straight lines constrained to pass through the origin were fitted by a
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least-squares method through the data points, confirming the linear relationship in
(3). From the slope of these lines the constants are found to within two standard
deviations to be Ci = 3.25 ± 0.17, Cf = 3.00 ± 0.23 and Cs = 1.53 ± 0.10. The ratio
of the initial to final fountain height is on average 1.08, a value much lower than the
ratio of 1.43 observed in a homogeneous environment (Turner 1966). The reason for
the smaller ratio is that when intermediate intrusion occurs, the interaction between
the up- and downflows takes place over a shorter distance, leading to less reduction
of the initial height.

3.2.2. A numerical model

The initial fountain height can also be predicted from a numerical solution of
the entrainment equations, which describe the conservation of volume, momentum
and buoyancy in the flow. In a stratified environment, ‘top-hat’ profiles, in which the
parameters are constant throughout the area of the fountain and zero outside, are
used to represent the average values in the flow (Morton 1959b). The entrainment
equations are therefore

d

dz
(b2ω) = 2αbω,

d

dz
(b2ω2) = b2∆,

d

dz
(b2ω∆) = −b2ωN2, (4)

where z is the height above the source, b is the fountain radius, ω is the axial velocity
of source fluid, ∆ = (g/ρo)(ρf − ρ) is the effective gravitational acceleration with ρf
the density of the fountain fluid, and α is the entrainment coefficient (Turner 1973,
p. 171). By defining the quantities Q = b2ω, M = b2ω2 and F = b2ω∆, equations (4)
become

dQ

dz
= 2αM1/2,

dM2

dz
= 2FQ,

dF

dz
= −N2Q. (5)

While the measured buoyancy flux at the actual source is equal to zero, there is a finite
but unknown buoyancy flux at the virtual source. The integration of (5) is therefore
started at a height z = zv with the source conditions given by Q = Qo/π, M = Mo/π
and F = 0 for the volume, momentum and buoyancy fluxes respectively.

Equations (5) were solved numerically over the experimental range of values of Qo
and N2 using a routine based on a fourth-order Runge–Kutta scheme. For each value

of the length scale M
1/4
o N−1/2, the point at which the momentum flux first equals zero

gives a value of the initial height. This integration was repeated for various values
of α to obtain the best agreement between the experimental and numerical values
for the initial fountain height (figure 5). An effective value of α for our fountain is
thus found to be α = 0.085 ± 0.010, which is not significantly different from the jet
entrainment coefficient of αj = 0.076 ± 0.004 (Fischer et al. 1979).

The entrainment equations do not describe the mixing between the upflow and
downflow or the additional entrainment of ambient fluid into the downflow that
occurs after the fountain has reversed direction, so it is not possible to obtain an
exact solution for the spreading height. However, the buoyancy, and thus the density
of the fountain fluid at the initial height, before the downflow has formed, can be
found from the solution of (5). The height in the environment where fluid with this
density would intrude represents an initial estimate of the spreading height.

Included in figure 5 is the estimate of the spreading height which was calculated
using α = 0.085. The agreement between this numerical estimate and the experimen-
tal data is surprisingly good, given that the simple numerical model neglects two
significant effects. Firstly, it does not include the interaction between the upflow and
downflow which will tend to reduce the fountain height from its initial value, causing
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Figure 5. Comparison between experimental and numerical results for the initial and spreading
heights of an axisymmetric fountain with a zero buoyancy flux at the source.

the falling fluid to intrude at a lower level. In this respect, the model overestimates the
spreading height. Secondly, it does not allow the density of the falling fountain fluid
to decrease as a result of the additional mixing with the lighter environment. The
omission of this effect therefore results in an underestimate of the spreading height.
From the reasonable agreement between the experimental and numerical results, it
appears that these two neglected effects largely offset each other.

3.3. Non-zero buoyancy flux at the source

The fountain behaviour in this general case depends on Mo, N and the buoyancy
flux at the source, ρiFo = ρi∆oQo, where ∆o = (g/ρo)(ρi − ρo). In this case, there is no
unique length scale, so we have chosen to write an expression for the three heights in
terms of the length scale for a homogeneous environment (Turner 1966):

z = f(σ)M3/4
o F−1/2

o . (6)

The dimensionless parameter, σ, has previously been introduced by Fischer et al.
(1979) and is defined by

σ =
M2

oN
2

F2
o

. (7)

The effect of the density gradient is therefore included in the unknown f(σ), which is
different for the three heights.

An understanding of the physical significance of σ can be gained by writing it in
an alternative form,

σ =
−reFr dρ/dz

(ρi − ρo)/Fr
, (8)

where the Froude number is defined by Fr = ωo/(re∆o)
1/2, and ωo is the initial velocity

of the source fluid. In a homogeneous environment, both the dimensionless fountain
height, zf/re, and the volume of environmental fluid entrained into the fountain
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depend linearly on Fr (Baines et al. 1990). Hence, the numerator in (8) is a measure
of the ambient density variation over the fountain height, while the denominator is a
measure of the final density difference between the fountain and ambient fluids. The
parameter σ therefore quantifies the relative magnitudes of the two buoyancy effects
that control the behaviour of the fountain.

3.3.1. Experimental results

To determine the form of f(σ) for the three heights, twenty four experiments
were performed using values of Qo in the range (11–45) × 10−6 m 3 s−1, ∆o between
0.01–0.53 m s−2 and N in the range 0.3 to 1.8 s−1. The dimensionless initial and final
heights are plotted with the known asymptotic limits of f(σ) in figures 6(a) and
6(b) respectively. The experimental data approaches to within 5% of the large-σ
limit at σ ≈ 20–40. The difference between the experimental data and the known
homogeneous limit falls to 5% at σ ≈ 0.1–0.5.

As previously discussed for the case of a zero buoyancy flux at the source, the ratio
of the initial to the final fountain height is less than that observed in a homogeneous
fluid. Figure 6(c) shows explicitly how this ratio decreases as the dimensionless

spreading height, M
−3/4
o F

1/2
o zs, increases. This effect is due to the increasing spreading

height reducing the distance over which the up- and downflows interact, as discussed
in § 3.2.1.

The effect of the changing ambient density gradient on the dimensionless spreading
height is shown in figure 7. In a homogeneous environment the intrusion occurs along
the base of the tank, and in a stratified environment the spreading height must again
approach zero as σ →∞. Hence there is a value of the density gradient at σm ≈ 40–60
which gives a maximum in the dimensionless spreading height. From figures 6(a) and
6(b), we see that this value of σ is close to the point at which the asymptotic limit for
large σ becomes valid.

To determine the value of σc, the critical point at which the spreading height first
rises from the base of the tank, M2

oN
2 is plotted against F2

o (figure 8). The data
corresponding to an intermediate spreading height are represented by open circles
while filled circles indicate basal spreading. The slope of the line which separates
these two regimes of behaviour is equal to σc, giving σc = 5.0 ± 0.1.

3.3.2. A numerical solution

As in § 3.2.2, the entrainment equations were solved for a range of values of Qo, ∆o

and N2, with the integration of (5) starting at z = zv and the source conditions given
by Q = Qo/π, M = Mo/π and F = Fo/π for the fluxes of volume, momentum and
buoyancy respectively.

Figure 9 shows both the experimental results for the initial height and the numerical
solution of (5) calculated using α = 0.085, the value found for the simple case of
a zero buoyancy flux at the source. This numerical solution for the initial height
is similar to that obtained by Morton (1959a, figure 4) for the flow from a point
source, although it is plotted in a different form here. Also shown in figure 9 is the
estimate of the spreading height based on the simple numerical model developed in
§ 3.2.2, and calculated using α = 0.085. Numerical estimates of σc and σm are found
to be σc = 4.0 and σm = 30, in comparison to the experimental results of σc = 5.0
and σm = 40–60.
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Figure 6. Dimensionless heights of an axisymmetric fountain showing the asymptotic results. (a)
Initial height: as σ → 0, f(σ) → 2.65 (Turner 1966), and as σ → ∞, f(σ) = 3.25σ−1/4. (b) Final
height: as σ → 0, f(σ) → 1.85 (Turner 1966), and as σ → ∞, f(σ) = 3.00σ−1/4. (c) Ratio of the
initial to final height of an axisymmetric fountain showing the decrease in the ratio as the spreading
height increases.
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Figure 7. Dimensionless spreading height of an axisymmetric fountain as a function of σ showing
the transition to the asymptotic behaviour for large σ, where f(σ) = 1.53σ−1/4.
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Figure 8. The data for experiments with an intermediate spreading height (◦) and in which
spreading occurs along the base (•) are separated by the plotted line which has a slope of 5.0.

4. Line fountains
4.1. Experimental methods

For an investigation of the turbulent fountains arising from a line source, we used
the same tank and line source as were employed by Baines et al. (1990). The acrylic
tank was 120 cm × 10 cm in cross-section and 60 cm deep, and was filled to a
depth of approximately 35 cm. Two rolls of wire mesh were placed in the ends of
the tank to act as damping screens. These were necessary to prevent the formation
of a mixed layer in the environment as a result of the downward deflection of the
spreading layer as it reached the tank walls (Baines et al. 1990). The line source was
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Figure 9. Comparison between experimental and numerical results for the initial and spreading
heights of an axisymmetric fountain with a finite buoyancy flux at the source.

located centrally on the base of the tank, perpendicular to its length. This source
was a circular pipe of 4 mm inner diameter with sixteen 0.5 mm holes drilled 5 mm
apart along its length. The initial three-dimensional flow from the holes was observed
experimentally to coalesce to two-dimensional flow within 3–4 cm of the source. The
position of the virtual source and the equivalent slot width for this two-dimensional
flow, bo, was measured using the same method as was used by Baines et al. (1990)
and described in § 3.1 for an axisymmetric fountain. Assuming a ‘top-hat’ velocity
profile, the position of the descending front formed by a weakly buoyant line jet in a
homogeneous environment is given by

z
1/2
d = H1/2 −

(
q2
oα

2boL2

)1/2

t, (9)

where H is the height at which the fluid initially intrudes, qo = 2boωo is the volume
flux per unit length of the source, α = 0.052 (Rodi 1980) is the two-dimensional
entrainment coefficient and L is the length of the tank (Baines et al. 1990). An
experiment was performed to measure the height of the descending front, and a

graph of z
1/2
d against t was plotted. The graph was linear for z > 4 cm, indicating

that for our experiments, the flow was two-dimensional for heights above 4 cm and
that the virtual source was at the outlet of the holes. From the slope of the linear
segment of the graph, the half-width of the source was calculated to be bo = 16.5 ±
1.2 µm. A similar value of bo = 16.4 µm was obtained by Baines et al. (1990, p. 579)
for the same source. It appears from their calculations that the value of α actually
used was different from that reported (α = 0.106).

4.2. Zero buoyancy flux at the source

In the special case of a zero buoyancy flux at the source, the initial, final and spreading
heights of a line fountain must take the form

z = c m1/3
o N−2/3, (10)
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Figure 10. The initial, final symmetric, final asymmetric and spreading heights as a function of the
length scale of a two-dimensional fountain with a zero buoyancy flux at the source.

where ρimo is the momentum flux per unit length at the source, mo = q2
o/2bo and c is

an unknown constant.
Eight experiments were performed with qo in the range (3.2–10.1) × 10−5 m2 s−1 and

N in the range 0.4–1.4 s−1. Figure 10 shows the experimental measurements of the

initial, final and spreading heights as a function of m
1/3
o N−2/3. Two values of the final

fountain height are plotted: those measured during the periods when the fountain
profile was symmetric, zfs, and asymmetric, zfa. The straight lines fitted through the
data points confirm the linear relationship in (10), and the constants are found within
an error of two standard deviations to be ci = 2.46 ± 0.08, cfs = 2.43 ± 0.20, cfa =
2.27 ± 0.20 and cs = 1.07 ± 0.05 for the initial, final symmetric, final asymmetric and
spreading heights, respectively.

In some experiments, the large fluctuations in the final symmetric height resulted
in an average value that was greater than the initial height of the fountain. Hence,
while most individual measurements indicate that the initial height is reduced by a
small amount to the final value, the difference between ci and cfs is not statistically
significant. This is in contrast to the corresponding difference of 30% observed in a
homogeneous environment (Baines et al. 1990). Similarly, the 7% difference observed
here between the symmetric and asymmetric final heights is much lower than the 20%
difference that was measured in a homogeneous environment (Baines et al. 1990).
These smaller height differences occur for the same reason as was discussed in § 3.3.1
for axisymmetric fountains, where the effect of intermediate intrusion reduces the
distance over which the up- and downflows interact.

4.2.1. Two-dimensional entrainment equations

A numerical solution for the initial fountain height is obtained from the two-
dimensional entrainment equations, which are

d

dz
(bω) = αω,

d

dz
(bω2) = b∆,

d

dz
(bω∆) = −bωN2, (11)

where b is now the half-width of the fountain and the average values of ω and ∆ are
represented by top-hat profiles. In this case, the actual and virtual sources coincide,
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Figure 11. Comparison between experimental and numerical results for the initial and spreading
heights of a two-dimensional fountain with a zero buoyancy flux at the source.

resulting in a unique length scale, so that we define the dimensionless quantities

z = α−1/3m
1/3
o N−2/3z̃, b = α2/3m

1/3
o N−2/3b̃,

ω = α−1/3m
1/3
o N1/3ω̃, ∆ = α−1/3m

1/3
o N4/3∆̃.

}
(12)

These allow the transformation to the dimensionless fluxes q̃ = b̃ω̃, m̃ = b̃ω̃2 and
f̃ = b̃ω̃∆̃, which then reduce (11) to

d

dz̃
q̃2 = 2m̃,

d

dz̃
m̃2 = 2f̃q̃,

d

dz̃
f̃ = −q̃. (13)

The dimensionless fluxes per unit length at the source are specified by q̃o = 0, m̃o = 1
and f̃o = 0, respectively, for the flow from a virtual line source.

The dimensionless initial height was found from a numerical solution of (13) to
be z̃i = 1.06. A comparison between the dimensionless forms of z defined in (10)
and (12) leads to the relation α = (z̃i/ci)

3. An effective value of α for our fountain
is therefore found to be α = 0.080 ± 0.008, which again is not significantly different
from the value of αj = 0.074 ± 0.004 (Rodi 1982) for a jet.

The estimate of the spreading height obtained using the numerical model introduced
in § 3.2.2 is shown in figure 11. In this case, the agreement between the experimental
results and the numerical results, which were calculated using α = 0.080, is not as
good. For a line fountain, the initial height is approximately equal to the average final
value, and so the numerical model only neglects the effects of the additional mixing
between the downflow and the environment. This leads to a higher final density and
thus lower spreading height than observed experimentally. From the magnitude of
this difference between the experimental and numerical results, we estimate that the
entrainment equations underestimate the total reduction in density of the source fluid
by approximately 18%.

4.3. Non-zero buoyancy flux at the source

In this general case, the fountain heights take the form

z = f(σ∗)mof
−2/3
o , (14)
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where ρifo = ρi∆oqo is the buoyancy flux per unit length at the source and the
dimensionless parameter, σ∗, is defined by

σ∗ =
m2
oN

2

f2
o

. (15)

To determine the form of f(σ∗) for the three heights, twenty experiments were
performed using values of qo in the range (3.3–10.4) × 10−5 m2 s−1, ∆o in the range
0.02–1.9 m s−2 and N in the range 0.17–1.4 s−1. The dimensionless initial height is
plotted with the known asymptotic limits in figure 12 (a). Figure 12 (b) shows the final
heights measured when the fountain profile was both symmetric and asymmetric,
along with the asymptotic limits for the symmetric final height. The experimental
results approach to within 5% of the limit for large values of σ∗ at σ∗ ≈ 30 for the
initial height and at σ∗ ≈ 100 for the final symmetric height. For both heights, the
deviation between the experimental results and the predicted homogeneous limit only
falls to 5% at σ∗ ≈ 0.4.

The dimensionless spreading height is plotted in figure 12 (c), showing a rapid
transition from a zero spreading height to a maximum in f(σ∗) at σ∗m ≈ 10–20. Unlike
the axisymmetric fountain, σ∗m does not correspond to the value of σ∗ at which the
asymptotic limit for a zero buoyancy flux at the source becomes valid. A value of σ∗c
is found from the graph of m2

oN
2 against f2

o to be σ∗c = 6.0 ± 0.1 (figure 13).

4.3.1. A numerical solution

The dimensionless parameters for this general case are defined by

z = α−1/3mof
−2/3
o z̃, b = α2/3mof

−2/3
o b̃,

ω = α−1/3f
1/3
o ω̃, ∆ = α−1/3m−1

o f
4/3
o ∆̃, N2 = m−2

o f
2
oÑ

2.

}
(16)

Equation (11) then becomes

d

dz̃
(q̃2) = 2m̃,

d

dz̃
(m̃2) = 2f̃q̃,

d

dz̃
(f̃) = −Ñ2q̃ (17)

with the source conditions specified by q̃o = 0, m̃o = 1 and f̃o = −1 for flow through
a virtual line source.

The numerical results for the initial and spreading heights are shown in comparison
with the experimental data in figure 14. The value of α = 0.080 found for the case
of a zero buoyancy flux at the source is used in these calculations, showing good
agreement for the initial height over the wide range of values of σ∗. As before, the
numerical estimate for the spreading height slightly underestimates the experimental
results, although the critical points of σ∗c = 5.4 and σ∗m = 32 found from this estimate
agree reasonably well with the experimental values of σ∗c = 6.00 and σ∗m ≈ 10–20.

5. Applications
We now present two quantitative examples of how the results of this study can be

applied to physical problems.

5.1. The heating or cooling of a room

In a reverse-cycle air conditioning system, axisymmetric turbulent fountains arise
when hot air is forced downwards through the ceiling into a cold room, or when
cold air is forced upwards through the floor into a hot room. Often it is preferable
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Figure 12. Dimensionless heights of a two-dimensional fountain with the asymptotic results. (a)
Initial height: as σ∗ → 0, f(σ∗) → 1.69 (Baines et al. 1990) and as σ∗ → ∞, f(σ∗) = 2.46σ∗−1/3.
(b) Symmetric and asymmetric final height with the asymptotic results for the symmetric height: as
σ∗ → 0, f(σ∗) → 1.3 (Baines et al. 1990), and as σ∗ → ∞, f(σ∗) = 2.43 σ∗−1/3. (c) Spreading height:
as σ∗ → ∞, f(σ∗) = 1.07 σ∗−1/3.
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Figure 13. The data for experiments with an intermediate spreading height (◦) and in which
spreading occurs along the base (•) are separated by the plotted line which has a slope of 6.0.

2

1

0.5

0.2

0.1

0.05

0.02
10–1 100 101 102 103 104

Initial height
Spreading height

f (r*)

r*

Figure 14. Comparison between numerical and experimental results for the initial and spreading
heights of a two-dimensional fountain with a finite initial buoyancy flux. The value of α = 0.080
was used in these numerical calculations.

to quickly heat or cool the lower region of the room. This most obviously occurs
when cold air forms a fountain which spreads along the floor. The temperature of the
injected air required to ensure basal spreading is calculated for typical environmental
and input parameters.

Consider a room 4 m high and 5 m × 5 m in area, in which the ambient temperature
of Tf = 25 ◦C at the floor increases with height at a rate of 1◦C m−1. The buoyancy
frequency is calculated using a thermal expansion coefficient of β ≈ 1

300
K−1 to be

N = 0.18 s−1. Cold air could be forced upwards at a typical flow rate of Qo =
2×10−2 m3 s−1 through a vent with an area A = 0.01 m2. For the parameter σ to be
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less than σc = 5.0, the temperature difference at the source must satisfy

∆T >
QoN

gβAσ
1/2
c

. (18)

Using the parameters listed above, we find that the injected air will spread along
the floor if Ti 6 20◦C. The numerical solution for the initial height agreed well with
the experimental results, and from this solution an estimate of the initial fountain
height at σ = 5.0 is found to be zi = 2.4 m above the floor. The final height is then
estimated from figure 6(c) to be zf ≈ zi/1.25 = 1.9 m.

When hot air is injected through the ceiling into a cold room, the region near the
floor is not immediately affected by the fountain. A theory to describe the subsequent
evolution of the room temperature with time is needed to determine the conditions
required to optimize the heating of the room at floor level. However, the application
of such a theory to this situation depends critically on the position of the return
vent, as the removal of air also results in changes to the fountain’s surroundings. The
effects of a fountain in a confined stratified region will be investigated in a subsequent
paper.

5.2. The replenishment of magma chambers

Hot magma that rises from deep within the Earth may form large chambers in
the crust (Turner & Campbell 1986). These chambers, which can evolve from being
homogeneous to having a density stratification, may then be replenished by the inflow
of denser magma through a fissure at their base. If this new pulse of magma enters
the chamber with sufficient upward momentum, a turbulent line fountain will result.
The characteristics of these fountains can be predicted using our results from § 4.

We consider here fissure widths of d = 1 m, 3 m and 10 m, and a fixed input magma
density of ρi = 2650 kg m−3. We assume that the inflowing magma is forced through
the fissure as a result of its buoyancy with respect to the surrounding wall rocks. If
the flow is turbulent, the flow rate is given by

qo =

(
g∆ρ

fρi

)1/2

d3/2, (19)

where g is the gravitational acceleration, ∆ρ is the average density difference between
the input magma and the wall rocks of the fissure and f is a friction coefficient
(Huppert & Sparks 1985). Probable values of ∆ρ = 300 kg m−3 and f = 0.03 are used
here, although there is some uncertainty about the most appropriate values for these
quantities, especially f, which is known to depend weakly on the flow parameters. To
determine if the flow is turbulent, the Reynolds number, Re = qoρi/η, is calculated
for each of the three fissure widths and for magma viscosities of η = 1 Pa s and 10
Pa s (table 1). In all cases, with the exception of the more viscous magma flowing
through the smaller fissure, Re > 2000 indicating that the flow is turbulent. In this
remaining case, turbulence may only just be developing.

To estimate realistic values of the environmental parameters, we consider the
evolution of a magma chamber as the magma loses heat by conduction to the cold
surrounding rocks. Initially, the magmas in the fissure and in the chamber have the
same density and composition. As the temperature at the boundaries of the chamber
decreases, olivine and pyroxene begin to crystallize. This crystallization decreases the
density of the remaining magma, which buoyantly rises away from the boundaries
and mixes turbulently with the overlying magma, leading to a homogenizing influence
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d=1 m d=3 m d=10 m

qo (m2 s−1) 6.1 32 192
Re (η = 1 Pa s) 1.6 × 104 8.5 × 104 5.1 × 105

Re (η = 10 Pa s) 1.6 × 103 8.5 × 103 5.1 × 104

Case I
zi (m) 81 146 476
zf (m) 62 112 366

Case II
zi (m) 171 355 792
zf (m) 168 350 782
zs (m) 74 154 344
∆ρe (kg m−3) 5.1 10.6 23.7

Case III
σ∗ 2.0 6.1 19.9
zi (m) 128 317 780
zf (m) ≈ 111 ≈ 261 ≈ 672
zs (m) 0 ≈ 7 ≈ 243
∆ρe (kg m−3) 2.6 6.3 15.6
ρc (kg m−3) 2643 2640 2634

Table 1. Properties of the line fountains in magma chambers for three examples of different
environmental density profiles

in the chamber (figure 15 a). As the temperature decreases further, plagioclase also
begins to crystallize from the melt, increasing the density of the remaining magma.
This dense fluid flows to the bottom of the chamber where it ponds, leading to a
density stratification near the base (figure 15 b). The density profile therefore evolves
from being completely homogeneous to having a stratified region overlayed by the
homogeneous magma. In these examples we assume that in a chamber that is several
kilometres in depth, only the lower 1 km is stratified.

We are now able to calculate the fountain heights and, where applicable, the ambient
density variation over the initial height for three different examples of environmental
density profiles (table 1).

Case I: Homogeneous environment The decrease in magma density as a result of the
fractionation of olivine and pyroxene is generally small: a typical value of 30 kg m−3 is
used here (Campbell & Turner 1989). Hence, in the first stage of the evolution of the
magma chamber, a fountain may be produced by the injection of the dense magma
into a lighter homogeneous environment with a density of ρo = 2620 kg m−3. The
initial and final heights of the fountain are obtained from the expressions determined
by Baines et al. (1990) (see the caption to figure 12). As the fissure width increases
so does the volume flux of the source magma, resulting in higher fountains. For
the smallest fissure, in which turbulence may only just be developing, the fountain
remains small compared to the height of the chamber, allowing little mixing between
the magmas. For the wider fissures, the fountains can reach a height that allows
significant interaction with the surrounding magma.

Case II: Zero buoyancy flux at the source The dense magma which ponds at the
base of the chamber as a result of the crystallization of plagioclase can have a range
of densities. In the later stages of fractionation, when the density at the base has
increased to ρb = ρi = 2650 kg m−3, the fountain produced has a zero buoyancy flux
at the source. The buoyancy frequency of the stratified region is calculated to be N =
0.01 s−1. The initial, symmetric final and spreading heights are calculated from (10)
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minerals

Stratified
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Figure 15. Evolution of a magma chamber as the temperature decreases (from Turner & Campbell
1986). (a) The fractionation of olivine and pyroxene releases light fluid which mixes turbulently
through the chamber, resulting in a lighter homogeneous magma. (b) The dense fluid released as
plagioclase crystallizes ponds at the base, establishing a density gradient. Dashed lines represent
stratification, and swirls represent mixing. The vertical scale is exaggerated.

using the experimentally determined values of the constants from § 4.2. The initial
height is a significant fraction of the depth of the stratified region, ranging from
171 m to 792 m as the fissure width increases. Further increase in the fissure width
would result in a fountain that rises initially into the overlying homogeneous magma.
The increase in the ambient density variation over the initial height, ∆ρe = zi(dρ/dz),
is also calculated.

Case III: Non-zero buoyancy flux at the source Depending on the stage of plagio-
clase crystallization, ρb can increase from ρb = 2620 kg m−3 (Case I) to ρb =
2650 kg m−3 (Case II) before further increases result in the replenishing magma
forming plumes rather than fountains. An illustrative example for the case of a finite
buoyancy flux at the source uses ρb = 2640 kg m−3 giving a buoyancy frequency of
N = 8.6 × 10−3 s−1. The three fissure widths give values of σ∗ corresponding to the
three regimes of behaviour: σ∗ < σ∗c , σ

∗ ≈ σ∗c and σ∗ > σ∗c . The numerical results,
which agreed well with the experiments, are used to estimate the initial fountain
heights, while the final and spreading heights are found from the experimental data
(figure 12). For the smallest fissure, the downflow spreads along the base of the
chamber. As the width increases to 3 m, the conditions are close to those at which
the spreading height first rises from the floor and the intrusion height is only 7 m.
For the largest fissure, the fluid intrudes at a significant height above the floor. The
initial heights which range from 128 m to 780 m again approach the top of the
stratified region but do not extend beyond it for the fissure widths under consid-
eration. We can also calculate the value of the density at the floor of the chamber
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which corresponds to the critical conditions between intermediate and basal spreading.
For this critical density ρc, N

2 = −(g/ρc)(ρo − ρc)/H and fo = (g/ρc)(ρi − ρc)qo,
giving

σ∗c =
m2
oρc(ρc − ρo)

Hgq2
o(ρi − ρc)2

. (20)

Writing mo in terms of qo and rearranging (20) results in a quadratic expression for
ρc, with the solution

ρc =
2Hgd2σ∗cρi − ρoq2

o − qo(4Hgd2σ∗cρi(ρi − ρo) + ρ2
oq

2
o)

1/2

2(Hgd2σ∗c − q2
o)

, (21)

where H = 1000 m is the depth of the gradient.

6. Conclusions
We have presented an experimental and theoretical study of the behaviour of tur-

bulent fountains in a stratified environment. In both axisymmetric and line fountains,
there are two distinct regimes of behaviour. In the limit of a zero buoyancy flux
at the source, the intrusion of the falling fluid occurs at an intermediate height in
the environment. When the density difference between the input fluid and the envi-
ronment is sufficiently large, spreading occurs along the base of the tank and the
qualitative behaviour approaches that observed in a homogeneous environment. The
conditions for which the experimental results approach these asymptotic limits were
found in terms of a dimensionless parameter, σ, introduced previously by Fischer et
al. (1979) and whose physical significance has been discussed. The transition from
an intermediate spreading height to intrusion along the base occurred at a critical
value of σc = 5.0 ± 0.1 for an axisymmetric fountain and σ∗c = 6.0 ± 0.1 for a line
fountain. The point at which the dimensional arguments for a zero buoyancy flux at
the source become valid coincided approximately with a maximum in the spreading
height at σm ≈ 40–60 for the axisymmetric fountain. In line fountains, the maximum
in the spreading height at σ∗m ≈ 10 occurred before the transition at σ∗ ≈ 100 to the
asymptotic behaviour expected for large σ∗.

The solution of the entrainment equations for the initial fountain height was
compared to the experimental results to give a value of α = 0.085 ± 0.010 for
an axisymmetric fountain and α = 0.080 ± 0.008 for a line fountain. Using an
approximate model and the experimentally determined values of α, the spreading
height was also estimated from a solution of the entrainment equations. For the
axisymmetric fountain, the numerical results agreed well with the experimental data,
while the solution for the line fountain underestimated the experimental results.

We have shown how the results of this study can be applied quantitatively to
physical problems. The effect of a density gradient on the spreading height of both cold
air injected into a hot room and dense magma injected into a magma chamber has been
calculated for typical environmental and source parameters. In most real situations
where the environmental fluid is finite in extent, this initial fountain behaviour will
evolve in time as the addition of source fluid alters the environment. These changes
will be outlined in a subsequent paper.
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